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INTRODUCTION 
ErbB2, a member of the epidermal growth factor receptor family (EGFR), is overexpressed in 20-30% 

of human breast cancer cases and forms oncogenic signaling complexes when dimerized to ErbB3 or other 
EGFR family members.  ErbB2/ErbB3 heterodimers are known to activiate Akt and loss of Akt in mouse 
models of breast cancer inhibits tumorigenesis.  We have crossed the MMTV-myr-Akt1 transgenic mice (which 
express constitutively active Akt1 in the mammary gland) with MMTV-c-ErbB2 transgenic mice to evaluate the 
role of Akt1 activation in ErbB2-induced mammary carcinoma utilizing immunoblot analysis, magnetic 
resonance spectroscopy, and histological analyses.  
 
BODY 
Task 3 – Determine the effect of activated Akt1 overexpression in ErbB2-overexpressing mouse 
mammary tumors (months 9-24) 
Task 3a.  Obtain six mammary tumors (and normal mammary gland controls) generated by MMTV-c-ErbB2 
mice and six mammary tumors (and normal mammary gland controls) generated by bitransgenic MMTV-c-
ErbB2, MMTV-myr-Akt1 mice 
 These tumors have been obtained and characterization of them follows in task 3c and task 3d described 
below. 
 
Task 3b.  Divide tissue samples and send a portion for histologic sectioning and staining and lyse the remaining 
portion for immunoblot analysis 
 The histology of the tumors is described in task 3d and the immunoblot analysis is described below in 
task 3c. 
 
Task 3d. Examine the histology of all tumors by hematoxylin & eosin staining and determine rates of apoptosis 
by anti-cleaved caspase 3 immunohistochemsitry. 

Activated myr-Akt1 accelerates mammary tumorigenesis in MMTV-c-ErbB2 transgenic mice.  
We have previously described the transgenic mice that express the activated myr-Akt1 transgene in the 
mammary gland which rarely develop tumors [1].  MMTV-c-ErbB2 (line 202) mice express the wild type rat 
ERBB2 gene in the mammary gland and have been an extensively utilized model of mammary carcinoma [2-4].  
To determine whether myr-Akt1 could accelerate mammary tumorigenesis, we crossed MMTV-c-ErbB2 (line 
202) mice [5] with MMTV-myr-Akt1 mice [1].  The MMTV-c-ErbB2 female mice developed single focal 
mammary tumors with a mean latency of 231 days (Figure 1A).  The bitransgenic MMTV-c-ErbB2, MMTV-
myr-Akt1 mice developed single focal mammary tumors with a mean latency of 114 days, meaning the 
bitransgenic animals develop mammary tumors twice as rapidly as the MMTV-c-ErbB2 animals (Figure 1A).  
A total of 30 MMTV-c-ErbB2 mice and 22 bitransgenic mice were used to calculate mean tumor latency.   

Tumor histology was evaluated using hematoxylin and eosin stained sections.  The histology of the c-
ErbB2 tumors was consistent with previous descriptions: they are solid tumors composed of uniformly sized 
and shaped cells with little stroma and no evidence of myoepithelial cells [5, 6] (Figure 1B).  Staining of tumors 
from the bitransgenic animals reveals two different types of tumors: tumors similar to c-ErbB2 tumors with 
solid, uniform architecture (Figure 1C) and a second type of tumor which demonstrates necrosis in areas of the 
tumor ten-twenty cells away from vasculature, consistent with a tumor which outgrows its blood supply (Figure 
1D-E).  Very little necrosis is ever observed in the tumors derived from MMTV-c-ErbB2 animals.  Following 
initial detection, tumor volumes were determined by measuring the tumor dimensions with calipers to estimate 
tumor volume (volume = (length x width x width)/2).  A comparison of tumor growth in mice of both genotypes 
revealed that tumor volume increased 2-3 times faster in the bitransgenic mice compared to tumors in the 
MMTV-c-ErbB2 transgenic mice (data not shown).  The increased growth rate of tumors in the bitransgenic 
mice could result from either increased proliferation, decreased apoptosis, or both.  Measurement of the 
apoptotic rates in both tumor types by activated caspase 3 immunohistochemistry (IHC) demonstrates that the 
tumors from the bitransgenic animals have an apoptotic rate half that of the tumors derived from the MMTV-c-
ErbB2 animals (Figure 1F).  Thus, the bitransgenic animals rapidly develop mammary tumors with a low rate of 
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apoptosis as compared to the tumors from MMTV-c-ErbB2 animals and at least half of these bitransgenic 
tumors exhibit extensive necrosis.  

Figure 1.  Bitransgenic 
MMTV-myr-Akt1, MMTV-c-
ErbB2 mice have 
decreased mammary 
tumor latency, more 
aggressive tumor 
histology and decreased 
apoptosis as compared to 
MMTV-c-ErbB2 mice.  A)  
Mammary tumor latency in 
bitransgenic MMTV-myr-
Akt1, MMTV-c-ErbB2 mice 
and MMTV-c-ErbB2 mice.  
Sixty days after birth, 
bitransgenic MMTV-myr-
Akt1, MMTV-c-ErbB2 mice 
and MMTV-c-ErbB2 mice

were palpated weekly to monitor for the presence of mammary tumors.  Graph depicts the rate at which tumors 
were first detected for both genotypes.  A total of 22 bitransgenic mice and 30 MMTV-c-ErbB2 mice were 
monitored and the graph depicts the number of days to tumor detection versus the percent of tumor free mice.  
B-E) Hematoxylin and eosin stained sections of a tumor derived from a MMTV-c-ErbB2 mouse (B) and tumors 
derived from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice (C-E).  C) A bitransgenic tumor with histology 
similar to that of c-ErbB2 tumors.  D-E) Two different bitransgenic tumors demonstrating necrotic tumor tissue 
distal to a blood vessel (blood vessel marked with * and necrosis marker with **).  200x original magnification.  
F)  Tumors from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice have less apoptosis than tumors from 
MMTV-c-ErbB2 mice.  Apoptosis was quantitated by activated caspase 3 immunohistochemistry.  The number 
of cells staining positively for activated caspase 3 was divided by the total number of cells counted to generate 
the apoptotic rate.
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Task 3c.  Perform immunoblot analysis comparing tumors from c-ErbB2 mice to bitransgenic c-ErbB2, myr-
Akt1 mice as well as to normal mammary gland controls using the following antibodies (all commercially 
available): anti-HA antibody (to detect myr-Akt1 transgene), anti-ErbB2, anti-ErbB3, anti-ErbB4, anti-EGFR, 
anti-phospho-ErbB2 (Tyr877), anti-phospho-ErbB2 (Tyr1248), anti-phospho-ErbB3 (Tyr1289), anti-Rb, anti-
phospho-Rb (Ser780), anti-Akt, anti-phospho-Akt (Ser473), anti-Src, anti-phospho-Src (Tyr416), 4G10 anti-
phospho-tyrosine antibody, p15, p27 and anti-cyclin D1, and anti-ERK1 and anti-GLUT1. 
 
Expression of the ErbB2 and myr-Akt1 transgenes in the mammary glands of transgenic mice.  The 
expression of the transgenes was examined at the protein level in tumors (T) and normal mammary gland 
control (N) taken from tumor-bearing mice of both the MMTV-c-ErbB2 and the MMTV-c-ErbB2, MMTV-
myr-Akt1 bitransgenic mice.  Mammary glands from FVB mice and MMTV-myr-Akt1 mice were used as 
controls.  Immunoblotting with an anti-ErbB2 antibody demonstrated that the level of ErbB2 protein was 
dramatically increased in tumors of both origins compared to normal mammary tissue from the same mouse, 
from FVB mice, or from myr-Akt1 transgenic mice (Figure 2A).  Expression of the HA-tagged myr-Akt1 
transgene was only detected in tumor tissue from the bitransgenic animals (Figure 2B).  The myr-Akt1 
transgene in the bitransgenic tumors was phosphorylated at Ser473, indicating enzymatic activity, and can be 
distinguished from endogenous Akt because the myr-Akt1 transgene has a higher molecular weight (Figure 2C).  
Akt was also phosphorylated in c-ErbB2 tumors, consistent with previously published data [7] (Figure 2C).  
Immunoblot using anti-pan-Akt antibody demonstrates expression of endogenous Akt in both tumor types with 
the c-ErbB2 tumors expressing more Akt than the bitransgenic tumors (Figure 2D).  An immunoblot with anti-
β-actin antibody demonstrates equal sample loading (Figure 2E).  All immunoblot data presented (here and 
below) is representative of all tumor and normal gland pairs examined (n=5 for c-ErbB2 and n=7 for 
bitransgenic).  The different levels of  proteins expressed in tumor tissue versus normal tissue is likely due to 
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both a difference in selective pressures brought upon by tumorigenesis and a dramatic increase in epithelial cell 
content in tumor tissue; the virgin mammary gland is predominantly adipocytes and tumor tissue is 
predominantly epithelial in nature. 

Figure 2.  Tumors from 
bitransgenic MMTV-myr-Akt1, 
MMTV-c-ErbB2 mice and 
MMTV-c-ErbB2 mice 
overexpress ErbB2 and 
phosphorylated Akt.  Tumor 
(T) and normal mammary 
tissue (N) were harvested from 
tumor-bearing mice. Tumors 
from three different bitransgenic 
MMTV-myr-Akt1, MMTV-c-ErbB2 
mice and three different MMTV-
c-ErbB2 mice are represented 
along with normal mammary

tissue from the same animal.  Additionally, normal mammary tissue was collected from control FVB and 
MMTV-myr-Akt1 mice and analyzed as a control.  Tissue was processed as described in the Materials and 
Methods section.  Equal amounts of total protein was loaded per lane to a 10% SDS-PAGE gel, transferred to 
PVDF and probed with the following antibodies: A) anti-ErbB2; B) anti HA to detect the HA epitope-tagged 
myr-Akt1 transgene; C) anti-phospho-Akt (Ser473); D) anti-pan-Akt; and E) anti-b-actin to demonstrate equal 
loading of the gel.
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Overexpression and activation of EGF receptor family members is diminished in tumors from 
bitransgenic animals.  Mammary tumors from transgenic mice expressing activated mutants of ErbB2 express 
elevated levels of total and tyrosine-phosphorylated ErbB2 and ErbB3 [8].  As previously shown in Figure 2, 
ErbB2 was increased in tumor lysates from both MMTV-c-ErbB2 and bitransgenic mice as compared to normal 
tissue (Figure 3C).  The extent of activating phosphorylation of ErbB2 was lower in the bitransgenic tumors 
than in the c-ErbB2 tumors which is demonstrated using phosphospecific antibodies to two different 
phosphorylation sites in ErbB2: Tyr877 and Tyr1248 (Figure 3A-B).  Phosphorylation of Tyr877 is mediated by 
Src and contributes to the activation of the ErbB2 tyrosine kinase; Tyr1248 is an autophosphorylation site [9, 
10].   

Figure 3.  Expression and 
activation of EGF receptor 
tyrosine kinase family 
members is decreased in 
bitransgenic MMTV-myr-Akt1, 
MMTV-c-ErbB2 mice as 
compared to MMTV-c-ErbB2 
mice.  Lysates from tumor (T) 
and normal mammary tissue (N) 
were used for immunoblot
analysis as described in Figure 2 
using the following antibodies: A) 
anti-phospho-ErbB2 (Tyr877) B) 
anti-phospho-ErbB2 (Tyr1248); 
C) anti-ErbB2; D) anti-phospho-
ErbB3 (Tyr1289); E) anti-ErbB3; 
F) anti-EGFR; G) anti-ErbB4; 
and H) anti-b-actin to 
demonstrate equal loading of the 
gel. 
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Increased levels of ErbB3 (Figure 3E), Tyr1289-phosphorylated ErbB3 (Figure 3D), EGFR (Figure 3F), and 
ErbB4 (Figure 3G) were readily detected in the c-ErbB2 tumors compared to normal tissue. While increased 
levels of EGFR and ErbB3 protein could be detected in the bitransgenic tumors compared to normal tissue, the 
extent of the increase was dramatically reduced compared to that observed in the c-ErbB2 tumors.  Most 
importantly, the phosphorylation of ErbB3 was very low at Tyr1289 (Figure 3D), which is an important 
phosphorylation site for PI3K recruitment and activation [11].  ErbB4, the sole member of the EGFR family 
whose expression bears positive prognostic value to breast cancer patients and suppresses proliferation and 
promotes apoptosis [12, 13] was not detected in the bitransgenic tumors (Figure 3G).  These data suggest that 
expression of activated Akt1 in the MMTV-c-ErbB2 transgenic mice alters the requirement for overexpression 
and activation of ErbB3 and other EGFR family members in mammary tumors induced by ErbB2.   
 
Activation of signaling downstream of ErbB2 in bitransgenic tumors is diminished.  Mammary tumors 
expressing c-ErbB2 have been found to possess elevated levels of Src tyrosine protein kinase activity [14, 15].  
The Src protein binds to phosphotyrosine residues in the cytoplasmic tail of ErbB2, resulting in Src 
phosphorylation at Tyr416 and catalytic activation [16, 17].  The amount of Tyr416-phosphorylated Src present 
in the c-ErbB2 tumors was dramatically increased in comparison to the bitransgenic tumors and normal tissue 
(Figure 4A) even though the bitransgenic tumors express more total Src than the c-ErbB2 tumors (Figure 4B).  
The reduced Src activation indicated by low Tyr416-phosphorylation levels in the bitransgenic tumors is 
corroborated by the reduced phosphorylation of ErbB2 at Tyr877 (Figure 3A) which is mediated by Src [9, 10].   
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F) anti-phosph-Shc
(Tyr239/240): G) anti-
Shc; H) anti-phospho-
Erk (corresponding to 
Erk2 phosphorylation at 
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anti-Erk and; J) 
phospho-tyrosine (pY).
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The lack of activation/overexpression of EGFR family members and the lack of activation of Src in the 
bitransgenic tumors suggested that signaling mediated by secondary signaling molecules might also be 
attenuated in the bitransgenic tumors as compared to c-ErbB2 tumors.  Gab2 is a scaffolding protein which can 
recruit the p85 subunit of PI3K when it is phosphorylated at Tyr452 [18] which in turn activates PH-domain 
containing proteins such as Akt [19].  The levels of Gab2 protein are elevated in both the c-ErbB2 tumors and 
the bitransgenic tumors as compared to normal gland controls (Figure 4D) although the level is slightly higher 
in the c-ErbB2 tumors than the bitransgenic tumors.  The amount of Tyr452-phosphorylated Gab2 is 
dramatically higher in the c-ErbB2 tumors as compared to the bitransgenic tumors (Figure 4C) suggesting that 
expression of activated Akt1 in the bitransgenic animals attenuates phosphorylation of Gab2 and subsequent 
docking of PI3K which occurs in the c-ErbB2 animals. 
 It has recently been demonstrated that another secondary signaling molecule, ShcA, is absolutely 
required for ErbB2-mediated tumorigenesis and phosphorylation of Tyr313 in ShcA may be important for 
tumor cell survival while phosphorylation of Tyr239/240 may be important for tumor vascularization [20].  c-
ErbB2 tumors and bitransgenic tumors both demonstrate expression of ShcA (Figure 4G), particularly the p52 
and the p46 isoforms while the p66 isoform was barely detectable.  Both tumor types also appear to have similar 
levels of Tyr239/240-phosphorylated ShcA (with the bitransgenic tumors having slightly less phosphorylation 
than the c-ErbB2 tumors), indicating that activities regulated by phosphorylation of this site (perhaps in 
angiogenesis) are important in both tumor types (Figure 4F).  However, the difference in phosphorylation of 
ShcA at Tyr313 differs more dramatically between the two tumor types (Figure 4E), with the c-ErbB2 tumors 
having more ShcA phosphorylated at Tyr313 than the bitransgenic tumors suggesting that activities regulated 
by phosphorylation of this site (cell survival) may be less important in the tumors that express activated Akt1. 
 Oncogenic signaling often activates the Erk pathway, which is a known mediator of cell proliferation, 
cell survival, angiogenesis and cell migration (reviewed in [21]).  Dual phosphorylation of Erk1 and Erk2 
(corresponding to Thr183 and Tyr185 of human Erk2) in the activation loop results in catalytic activation of 
kinase activity [22].  Despite the attenuation of several signaling events in the bitransgenic tumors as compared 
to the c-ErbB2 tumors as discussed above, both tumor types maintain similar levels of phosphorylated/activated 
Erk (Figure 4H) indicating that transgenic activation of Akt1 does not bypass Erk signaling.  Normal gland 
controls demonstrate various levels of Erk activation.  Finally, total amounts of tyrosine-phosphorylated 
proteins was evaluated by immunoblotting with 4G10, an antibody against phospho-tyrosine (Figure 4J).  This 
immunoblot demonstrates that the c-ErbB2 tumors contain higher levels of tyrosine phosphorylated protein than 
the bitransgenic tumors, which again suggests decreased tyrosine kinase signaling in c-ErbB2 tumors which 
already express activated Akt.  It is also interesting to note that the “normal” c-ErbB2 samples have higher 
levels of tyrosine-phosphorylated proteins than other “normal” samples which suggests that these samples may 
be in an early, pre-neoplastic stage of transformed tyrosine kinase signaling. 
 
Expression/activation of cell cycle control proteins in bitransgenic tumors.  The decrease in the tumor 
latency observed in the bitransgenic tumors would predict that there would be a change in the 
expression/modification of cell cycle control proteins in the bitransgenic tumors compared to the c-ErbB2 
tumors.  Phosphorylation of Rb by active cyclin-dependent kinases inactivates Rb activity and is an important 
regulatory step in cell cycle entry [23, 24].  Immunoblot analysis with a phospho-specific antibody against Rb 
(Ser780) demonstrated Rb phosphorylation in tumor lysates from both genotypes of mice, and not in the normal 
tissue from the same mice (Figure 5A).  The extent of Rb phosphorylation was greater in the c-ErbB2 tumors 
than in the bitransgenic tumors which is surprising since the latter have a shorter tumor latency and greater 
mitotic index which we predicted would correlate with more Rb phosphorylation and a more active cell cycle.  
However, Hutchinson et. al. observed a similar phenomenon in their study: the NDL2 tumors (activated ErbB2) 
demonstrated a higher level of Ser780-phosphorylated Rb than the bitransgenic NDL2/Akt1DD tumors even 
though the bitransgenic animals had a shorter tumor latency [25].  The total amount of Rb is nearly identical in 
all tumors examined indicating differences observed in Rb phosphorylation are not in fact due to differences in 
total Rb levels (Figure 5B). 
 We also examined a second cell cycle control protein, cyclin D1.  The D-type cyclins are synthesized 
during the G1 phase of the cell cycle following stimulation of cells with growth factors that stimulate cell cycle 
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entry and are required for cell cycle progression [26].  Immunoblot analysis revealed cyclin D1 in all samples 
with the bitransgenic tumors having a higher level of cyclin D1 than normal tissue, but the c-ErbB2 tumors 
contained more cyclin D1 than the bitransgenic tumors (Figure 5C).  This data correlates with the Rb 
phosphorylation data which is consistent with the role of cyclin D1 in positively regulating CDK activity and 
phosphorylation of Rb [26]. 
 The bitransgenic tumors have a shorter latency than the c-ErbB2 tumors, but contain less phosphorylated 
Rb and less cyclin D1 which led us to examine some cell cycle inhibitors.  p15 (INK4b), p27 (Kip1) and p21 
(Cip1) are all inhibitors of cell cycle progression [27].  Immunoblot analysis for p15 demonstrated high 
expression in the c-ErbB2 tumors, a lack of expression in all normal glands and very faint expression in the 
bitransgenic tumors (Figure 5D).  The expression profile of p27 was similar with a lack of expression in all 
normal tissue, high expression in c-ErbB2 tumors and slightly lower level of expression in the bitransgenic 
tumors (Figure 5E).  We were unable to detect p53 and p21 in any of the tumor and normal mammary tissue 
samples, though both were present in an irradiated control gland (data not shown).  While c-ErbB2 tumors 
contain more positive markers of the cell cycle than the bitransgenic tumors (phosphorylated Rb and cyclin D1), 
they also express more negative regulators of the cell cycle (p15 and p27) which likely serves to balance cell 
cycle progression. 

Figure 5.  MMTV-c-ErbB2 
tumors demonstrate different 
cell cycle proteins than tumors 
from bitransgenic MMTV-myr-
Akt1, MMTV-c-ErbB2 mice.  
Lysates from tumor (T) and 
normal mammary tissue (N) 
were used for immunoblot
analysis as described in Figure 2 
using the following antibodies: A) 
anti-phospho-Rb (Ser780); B) 
anti-Rb; C) anti-cyclin D1; D) 
anti-p15; E) anti-p27. 
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The bitransgenic tumors have an elevated metabolic phenotype compared to MMTV-c-ErbB2 tumors.  
One of the hallmarks of tumors and tumor cell lines is the elevated level of glucose transport to support the high 
glycolytic rate of tumor cells [28, 29].  Myr-Akt1 can stimulate the translocation of the GLUT1 glucose 
transporter to the cell surface of lymphoid cells cultured in the absence of growth factors as well as increase 
hexokinase activity, glucose consumption, and lactate production, which suggests that Akt stimulates aerobic 
glycolysis and produces the so-called “Warburg effect” [30, 31].  Immunoblot analysis demonstrates elevated 
levels of GLUT1 (the major glucose transporter in cancer cells) in lysates from mammary tumors from both the 
MMTV-c-ErbB2 and the bitransgenic mice as compared to the normal glands.  However, GLUT1 protein 
expression was greater in the bitransgenic tumors (Figure 6A).  Cell-line transfection using GLUT1 cDNA 
validate the elongated band identified by GLUT1 immunoblot and the reason for this elongated band is likely 
due to glycosylation of GLUT1 (data not shown). 
 To determine whether the increased level of GLUT1 correlated with an increase in glycolysis (increased 
glucose consumption and increased lactate production), we used magnetic resonance spectroscopy (MRS) to 
quantitate lactate concentrations in extracts prepared from tumors since lactate is the end-product of glycolysis.  
The mammary tumors examined in this study are of epithelial cell origin, so the use of mammary tissue from 
day two of lactation (L2) as a control tissue allows for the comparison of normal epithelium to tumor 
epithelium, whereas the normal virgin mammary gland is composed mostly of adipocytes [32].  Compared to 
normal L2 tissue, there was a four-fold increase in the amount of lactate in the MMTV-c-ErbB2 tumors and a 
six-fold increase in the bitransgenic tumors (Figure 6C) (p<0.00001 between L2 and both tumors and p<0.02 
between ErbB2 and bitransgenic, all n=5).  This increase in tumor glycolytic activity was accompanied by 
significantly decreased intratumor concentrations of glucose: 1.10 nmol/mg in the L2 mammary gland, 0.46 
nmol/mg in ErbB2 tumors (p<0.01) and 0.14 nmol/mg in bitransgenic tumors (p<0.0004) (Figure 6D) indicating 
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high glucose utilization due to increased activity of glycolytic enzymes.  Thus, the bitransgenic tumors appear 
to consume more glucose and secrete more lactate than the c-ErbB2 tumors or the normal epithelial cell-
enriched lactating mammary gland. 

Figure 6.  Metabolic activity is 
elevated in tumors from 
bitransgenic MMTV-myr-Akt1, 
MMTV-c-ErbB2 mice compared 
to tumors from MMTV-c-ErbB2 
mice.   Increased expression of 
the GLUT1 glucose transporter in 
bitransgenic MMTV-myr-Akt1, 
MMTV-c-ErbB2 tumors as 
compared to the MMTV-c-ErbB2 
tumors.  Lysates from tumor (T) 
and normal mammary tissue (N) 
were used for immunoblot analysis 
as described in Figure 2 using a 
polyclonal antibody against the c-
terminus of GLUT1 (A) and actin
loading control (B).  Intratumor

concentration (nmol/mg tissue)  of lactate (C) and glucose (D) in mammary glands at day 2 of lactation (L2), 
tumors from MMTV-c-ErbB2 and bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice (all n=5) calculated 
from 1H-MRS.
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KEY RESEARCH ACCOMPLISHMENTS 

• Expression of activated Akt1 in the mammary gland of MMTV-c-ErbB2 mice accelerates tumorigenesis 
• Tumors from bitransgenic mice demonstrate lower levels of apoptosis, but higher levels of necrosis as 

compared to tumors from MMTV-c-ErbB2 mice. 
• Tumors from MMTV-c-ErbB2 mice overexpress all four members of the EGFR family and have 

activating phosphorylated tyrosine residues whereas tumors from the bitransgenic mice do not 
overexpress the EGFR family to the same extent and are much less activated in terms of tyrosine 
phosphorylation. 

• Tumors from the bitransgenic mice do not require many of the secondary tyrosine signaling events that 
are seemingly required for tumorigenesis in the MMTV-c-ErbB2 mice.  However, both types of tumors 
have activated Erk, indicating its importance in both tumorigenesis models. 

• Tumors from the bitransgenic mice demonstrate higher metabolic activity than tumors from MMTV-c-
ErbB2 mice. 

 
REPORTABLE OUTCOMES 
This research was published in Breast Cancer Research in August 2008 and the final version is attached to this 
document as an appendix [33]. 
 
This research has been presented at intra-departmental seminars as well as inter-departmental seminars at the 
University of Colorado Denver, Anshutz Medical Campus:   

• Department of Pathology Grand Rounds Series: “Activated Akt1 Accelerates Mammary Tumorigenesis 
in the MMTV-c-ErbB2 Transgenic Mice Without Overexpression/Activation of ErbB3”, April 6, 2007.  
Presented by Christian Young 

• Program in Cancer Biology Research in Progress Series: “Activated Akt1 Accelerates Mammary 
Tumorigenesis in the MMTV-c-ErbB2 Transgenic Mice Without Overexpression/Activation of ErbB3”, 
January 14, 2008. 

 
This research has been presented in poster format: 
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• Gordan Research Conference on Mammary Gland Biology.  “Activated Akt1 Accelerates Mammary 
Tumorigenesis in the MMTV-c-ErbB2 Transgenic Mice Without Overexpression/Activation of ErbB3”.  
Presented by Christian Young, June 2007. 

• University of Colorado Mammary Gland Biology Program Project Grant Retreat.  This is a gathering of 
the six laboratories at the University of Colorado which received a NIH program project grant to study 
mammary gland biology.  This retreat includes the recipients of the personell of laboratories receiving 
the award as well as three outside board members and another few labs at the University of Colorado 
and a few guest speakers from other Universities.  This two day retreat includes oral presentations and 
poster sessions.  “Activated Akt1 Accelerates Mammary Tumorigenesis in the MMTV-c-ErbB2 
Transgenic Mice Without Overexpression/Activation of ErbB3”.  Presented by Christian Young, 
January 2007. 

 
The animal models described are currently under use for future studies. 
 
The data described here has been used as preliminary data to support grant proposals authored by Steve 
Anderson and personnel in his laboratory to study the role of PI3K in breast cancer and the role of GLUT1 in 
breast cancer.  A DOD BCRP predoctoral award has been awarded to Erica Nolte (a member of Steve 
Anderson’s laboratory and co-author of the published version of this research) to study the role of PI3K in 
breast cancer. 
 
CONCLUSIONS 

Human breast tumors overexpress ErbB2 in 20-30% of cases and patients with this type of tumor bear a 
poor prognosis and are currently treated with Trastuzumab, a humanized monoclonal antibody.  Trastuzumab 
treatment significantly boosts the prognosis for patients with ErbB2 overexpressing breast tumors, but the 
response rate for these patients is around 50-60%.  As discussed, ErbB2/ErbB3 heterodimer signaling is a 
critical aspect of ErbB2-mediated tumorigenesis.  However, we have demonstrated that expression of activated 
Akt1 in MMTV-c-ErbB2 animals accelerates tumorigenesis while maintaining ErbB2 overexpression without 
the expected upregulation of ErbB3 and without activation of both ErbB2 and ErbB3.  Nagata et. al. (2) 
demonstrated that loss of the PTEN tumor suppressor (which induces Akt activation) predicts resistance to 
trastuzumab treatment.  This leads us to predict that our bitransgenic animals represent a model of a patient who 
would be resistant to trastuzumab because tumors from bitransgenic animals overexpress ErbB2 (which would 
make them candidates for trastuzumab treatment), but drugs which molecularly target ErbB2 (such as 
trastuzumab) or ErbB2/ErbB3 heterodimer (such as Pertuzumab) may be futile since signaling downstream of 
ErbB2/ErbB3 is already attenuated in the bitransgenic animals.  If activation of Akt1 in human tumors (which 
can occur by loss of PTEN function or activating mutation of either PI3K or Akt) is critical to ErbB2 positive 
breast cancer cells becoming trastuzumab resistant, then evaluation of the activation status of ErbB2, ErbB3 
and/or Akt may assist in deciding the prognosis and treatment strategy for breast cancer patients as opposed to 
the current screening which only identifies amplification of ErbB2.  Additionally, therapies which molecularly 
target the Akt pathway may be critical to overcome trastuzumab resistance. 
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Abstract

Introduction ErbB2, a member of the epidermal growth factor
receptor (EGFR) family, is overexpressed in 20% to 30% of
human breast cancer cases and forms oncogenic signalling
complexes when dimerised to ErbB3 or other EGFR family
members.

Methods We crossed mouse mammary tumour virus (MMTV)-
myr-Akt1 transgenic mice (which express constitutively active
Akt1 in the mammary gland) with MMTV-c-ErbB2 transgenic
mice to evaluate the role of Akt1 activation in ErbB2-induced
mammary carcinoma using immunoblot analysis, magnetic
resonance spectroscopy and histological analyses.

Results Bitransgenic MMTV-c-ErbB2, MMTV-myr-Akt1 mice
develop mammary tumours twice as fast as MMTV-c-ErbB2
mice. The bitransgenic tumours were less organised, had more
mitotic figures and fewer apoptotic cells. However, many
bitransgenic tumours displayed areas of extensive necrosis
compared with tumours from MMTV-c-ErbB2 mice. The two
tumour types demonstrate dramatically different expression and
activation of EGFR family members, as well as different
metabolic profiles. c-ErbB2 tumours demonstrate
overexpression of EGFR, ErbB2, ErbB3 and ErbB4, and
activation/phosphorylation of both ErbB2 and ErbB3,
underscoring the importance of the entire EGFR family in

ErbB2-induced tumourigenesis. Tumours from bitransgenic
mice overexpress the myr-Akt1 and ErbB2 transgenes, but there
was dramatically less overexpression and phosphorylation of
ErbB3, diminished phosphorylation of ErbB2, decreased level of
EGFR protein and undetectable ErbB4 protein. There was also
an observable attenuation in a subset of tyrosine-
phosphorylated secondary signalling molecules in the
bitransgenic tumours compared with c-ErbB2 tumours, but Erk
was activated/phosphorylated in both tumour types. Finally, the
bitransgenic tumours were metabolically more active as
indicated by increased glucose transporter 1 (GLUT1)
expression, elevated lactate production and decreased
intracellular glucose (suggesting increased glycolysis).

Conclusion Expression of activated Akt1 in MMTV-c-ErbB2
mice accelerates tumourigenesis with a reduced requirement
for signalling through the EGFR family, as well as a reduced
requirement for a subset of downstream signaling molecules
with a metabolic shift in the tumours from bitransgenic mice. The
reduction in signalling downstream of ErbB2 when Akt is
activated suggest a possible mechanism by which tumour cells
can become resistant to ErbB2-targeted therapies,
necessitating therapies that target oncogenic signalling events
downstream of ErbB2.
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Introduction
The ErbB2/Neu/HER2 oncogene is amplified and overex-
pressed in 20% to 30% of human breast cancer cases, and
expression of ErbB2 is associated with aggressive metastatic
tumour behaviour, decreased time to clinical relapse and poor
prognosis [1,2]. The importance of c-ErbB2 in mammary
tumourigenesis was further established through a study of
transgenic mice that expressed either activated ErbB2 (Neu-
NT) [3,4] or non-activated c-ErbB2 [5,6]. Activated ErbB2-
induced tumours in male and female mice have an average
time to tumour appearance of 114 and 89 days, respectively
[3], while expression of non-activated c-ErbB2 in the mam-
mary gland of transgenic mice resulted in tumour formation in
female mice in 150 to 300 days, with the latency depending
on the founder line examined [5,6]. The most extensively inves-
tigated transgenic line to date is the mouse mammary tumour
virus (MMTV)-c-ErbB2 line 202 female mice in which adeno-
carcinomas appear with an average latency of 205 days [6].
Overexpression of c-ErbB2 mRNA and protein, elevated c-
ErbB2 kinase activity and increased tyrosine phosphorylation
of cellular proteins was observed in tumour tissue, but not in
normal mammary tissue from the same mouse [6].

Protein levels of ErbB3 and tyrosine phosphorylation of ErbB3
are increased in mammary tumours from transgenic mice
expressing activated ErbB2 (Neu-DL) [7], suggesting that
ErbB2 and ErbB3 function as an oncogenic unit [8,9]. Holbro
et al. [9] demonstrated that loss of either functional ErbB2 or
ErbB3 results in a loss of tumour cell proliferation even though
ErbB3 does not possess an active tyrosine kinase domain
[10]. ErbB3 phosphorylation activates phosphatidylinositol 3-
kinase (PI3K) and its downstream target, Akt, thus providing a
possible mechanism for the requirement for both ErbB2 and
ErbB3 in stimulating mammary tumourigenesis. This gives rise
to the hypothesis that expression of activated Akt could com-
pensate for the expression of ErbB3 in ErbB2-induced mam-
mary tumours.

Our group and others have demonstrated that expression of
activated Akt1 [11,12] or overexpression of non-activated
Akt1 [13] can delay mammary gland involution. In spite of the
fact that Akt was discovered as an oncogene which induces
leukaemia [14], mammary tumours were not observed in these
transgenic mice [11-13]. Hutchinson et al. demonstrated that
activated Akt1 could accelerate mammary tumourigenesis in
transgenic mice that express activated ErbB2 [15]. Similarly,
deletion of one or both alleles of phosphatase and tensin
homolog (PTEN), a negative regulator of Akt signalling, accel-
erates tumour induction in another ErbB2 mouse mammary
tumour model [16]. In the current study, we demonstrate that
transgenic expression of activated Akt1 can accelerate mam-
mary tumourigenesis in the MMTV-c-ErbB2 mice. However,
we observe a significant attenuation of tyrosine kinase signal-
ling in tumours from the bitransgenic MMTV-myr-Akt1, MMTV-
c-ErbB2 animals compared with tumours from the MMTV-c-

ErbB2 animals, particularly with regard to ErbB3 and Src.
These results have implications for human ErbB2-positive
tumours that may also have high levels of activated Akt,
whether due to the loss of the tumour suppressor PTEN or
mutations in either PI3K or Akt.

Materials and methods
Mice lines
The MMTV-c-ErbB2 (line 202) transgenic mice [6] were
obtained from The Jackson Laboratory, Bar Harbor, ME.
Details of the MMTV-myr-Akt1 mice have been previously
described [11]. These two FVB-derived transgenic lines were
crossed and progeny genotypes were determined by PCR
analysis. Virgin MMTV-c-ErbB2 and bitransgenic MMTV-c-
ErbB2, MMTV-myr-Akt1 female mice were palpated weekly to
detect the presence of mammary tumours starting at 60 days
of age. Tumours were excised when they reached 1 cm in
diameter and 1 cm deep, and normal, non-tumourigenic mam-
mary tissue was harvested from the same animal at the time of
tumour harvest. All mice were maintained in the Center for
Comparative Medicine at the University of Colorado Denver –
Anshutz Medical Campus, an Association for Assessment and
Accrediation of Laboratory Animal Care-approved facility, and
used in accordance with Institutional Animal Care and Use
Committee-approved protocols.

Isolation of tail DNA and genotyping by PCR
DNA was extracted from 1.5 cm sections of tail and genotyp-
ing was performed using previously described protocols [11].
Detection of the Myr-Akt1 transgene utilised a forward primer
which anneals to the Akt1 sequence: (5'-GCCGCTACTAT-
GCCATGAAGA-3') and a reverse primer which anneals to the
HA (haemagglutin) epitope: (5'-GTAATCTGGAACATCG-
TATGGGTA-3'). Detection of the ErbB2 transgene utilised the
forward primer (Neu-3) 5'-CGGAACCCACATCAGGCC-3'
and the reverse primer (Neu-4) 5'-TTTCCTGCAG-
CAGCCTACGC-3' [17].

Mutation analysis of tumour ERBB2 transgene
Total RNA isolated from tumour samples was subjected to sin-
gle-strand cDNA synthesis using 2.5 μM random hexamers
and 1 μg RNA. Amplification of the rat ERBB2 gene, nucle-
otides 1492 to 2117, was performed using forward primer
AB2913, 5'-CGGAACCCACATCAGGCC-3', and reverse
primer AB1310, 5'-TTTCCTGCAGCAGCCTACGC-3', as
previously described [18]. The PCR products were separated
on a 2% agarose gel, the bands of interest (representing trun-
cated ERBB2) were purified and then re-amplified using the
same primers. Sequence analysis was conducted by the Uni-
versity of Colorado Cancer Center Sequencing Core using
forward primer 1882, 5'-CACTACAAGGACTCGTCCT-3',
and reverse primer 2133, 5'-CCAACGACCACCACTAAG-3'.
Page 2 of 12
(page number not for citation purposes)



Available online http://breast-cancer-research.com/content/10/4/R70
Histological analysis and mitotic index quantification
Dissected tumours and normal mammary tissue were fixed in
4% neutral buffer formalin, embedded in paraffin, sectioned (4
μm) and stained with haematoxylin and eosin. Histological
sectioning and staining were performed by the Histology Serv-
ice, Department of Pathology, University of Colorado School
of Medicine. The mitotic index of tumours of each genotype
was determined by counting the number of mitotic figures in
10 fields of view with a magnification of 500 and the data were
presented as the mean of three tumours +/- standard deviation
(SD).

Quantification of apoptotic cells
Detection of apoptotic cells was performed by immunohisto-
chemical staining with anti-active caspase-3 antibody (Cell
Signaling Technologies, Beverly, MA, USA). For antigen
retrieval, slides in citrate buffer were heated in a microwave for
20 minutes and allowed to cool before blocking with 10% nor-
mal goat serum. Slides were incubated overnight at 4°C with
anti-activated caspase-3 antibody at a dilution of 1:100. Non-
specific peroxidase activity was quenched with 1% hydrogen
peroxide followed by secondary antibody (goat anti-rabbit)
then tertiary Vector ABC (Vector Laboratories, Burlingame,
CA, USA). Colour development was achieved by incubation
with DAB followed by counterstaining with Gill's Haematoxy-
lin. Cell counts were performed on a minimum of five fields of
view per slide from three mice (total cells counted ranged from
1800 to 2500 per mouse).

Immunoblot analysis
Protein was extracted from frozen tumour tissue and normal
tissue by grinding them to a powder under liquid nitrogen,
resuspended in Mammary Gland Lysis Buffer (50 mM Tris (2-
Amino-2-(hydroxymethyl)-1,3-propanediol) pH 7.4, 150 mM
sodium chloride, 2 mM EDTA, 50 mM sodium fluoride, 1% Tri-
ton X-100, 1% deoxycholic acid, 0.1% sodium dodecyl sulfate
[SDS], 1 mM dithiothreitol, 5 mM sodium orthovanadate, 100
μg/ml phenylmethanesulphonylfluoride and a complete pro-
tease inhibitor cocktail (Roche Applied Sciences, Indianapolis,
IN, USA)), followed by Dounce homogenisation. Lysates were
clarified by centrifugation and protein concentrations deter-
mined using the Bradford assay (BioRad, Hercules, CA, USA).
Equal amounts of total protein per lane (2 to 50 μg) were
resolved on SDS-polyacrylamide gels, transferred to polyvinyli-
dene difluoride (PVDF) membrane (Immobilon-P, Millipore,
Bedford, MA, USA) and immunoblotted with the desired
antibody.

Anti-HA antibody was obtained from Roche Applied Sciences
(Indianapolis, IN, USA). Anti-phospho-ErbB2 (Tyr877), anti-
phospho-ErbB3 (Tyr1289), anti-phospho-retinoblastoma (Rb)
(Ser780), anti-phospho-Akt (Ser473), anti-phospho-Src
(Tyr416), anti-phospho-Gab2 (Tyr452), anti-phospho-Shc
(Tyr313), anti-phospho-Shc (Tyr239/240), anti-Akt, anti-p15,
anti-p27 and anti-cyclin D1 antibodies were obtained from

Cell Signaling Technologies (Beverly, MA, USA). The anti-
ErbB2, anti-ErbB3, anti-ErbB4, anti-EGFR, anti-Src, anti-Shc,
anti-β-actin and anti-ERK1 antibodies were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). The anti-
phospho-ErbB2 (Tyr1248) was obtained from Abcam (Cam-
bridge, MA, USA). The anti-Rb antibody was obtained from BD
Pharmingen (San Jose, CA, USA). The anti-phospho-ERK anti-
body was obtained from Promega (Madison, WI, USA). The
anti-Gab2 polyclonal antibody was generously supplied by Dr.
Haihua Gu (University of Colorado, Denver, USA). The glu-
cose transporter 1 (GLUT1) polyclonal antibody was gener-
ated by Global Peptide (Fort Collins, CO, USA) by immunising
rabbits with a peptide corresponding to the C-terminus of the
human/mouse GLUT1 sequence (KTPEELFHPLGADSQV)
and affinity purifying the resulting IgG.

Metabolic profiling of tumours by magnetic resonance 
spectroscopy
Snap-frozen tissues were ground into a powder under liquid
nitrogen then homogenised by sonication in chloroform-meth-
anol to precipitate proteins and separate aqueous and lipid-
soluble metabolites as described [19]. The lyophilised aque-
ous and lipid extracts were dissolved in deuterated solvents
and analysed using high-resolution 1H-magnetic resonance
spectroscopy (MRS) with the Bruker narrow-bore 500 MHz
DRX system and an inverse TXI-5-mm probe (Bruker Biospin
Inc., Fremont, CA, USA). The following 1H-nuclear magnetic
resonance (NMR) parameters with water suppression ('zgpr')
were used: 500.12 MHz operating 1H frequency; 40 accumu-
lations; 0 dB power level; 55 dB irradiation power level; 7.5 μs
pulse width; 12 ppm spectral width; and 12.8 second repeti-
tion time (fully relaxed). An external standard substance, tri-
methylsilyl propionic-2,2,3,3,-d4 acid ([TMSP] 20 and 50 mM
in heavy water) in a thin sealed glass capillary was placed into
the NMR tubes during all experiments for metabolite quantifi-
cation and as a 1H chemical shift reference (at 0 ppm). After
performing Fourier transformation, phase and base line correc-
tions, each 1H peak of corresponding metabolites was inte-
grated using 1D WINNMR program (Bruker Biospin Inc.,
Fremont, CA, USA). The NMR peak assignment was con-
firmed by two-dimensional NMR spectra [19]. All quantitative
data sets from 1H-MRS are reported as mean ± SD (n = 5 for
each group). The p values (from analysis of variance [ANOVA])
below 0.05 were considered as statistically significant.

Results
Activated myr-Akt1 accelerates mammary 
tumourigenesis in MMTV-c-ErbB2 transgenic mice
We have previously described the transgenic mice that
express the activated myr-Akt1 transgene in the mammary
gland which rarely develop tumours [11]. MMTV-c-ErbB2 (line
202) mice express the wild type rat ERBB2 gene in the mam-
mary gland and have been an extensively used model of mam-
mary carcinomas [20-22]. To determine whether myr-Akt1
could accelerate mammary tumourigenesis, we crossed
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MMTV-c-ErbB2 (line 202) mice [6] with MMTV-myr-Akt1 mice
[11]. The MMTV-c-ErbB2 female mice developed single focal
mammary tumours with a mean latency of 231 days (Figure
1a).

The bitransgenic MMTV-c-ErbB2, MMTV-myr-Akt1 mice
developed single focal mammary tumours with a mean latency
of 114 days, meaning the bitransgenic animals develop mam-
mary tumours twice as fast as the MMTV-c-ErbB2 mice (Fig-
ure 1a). A total of 30 MMTV-c-ErbB2 mice and 22
bitransgenic mice were used to calculate mean tumour
latency.

Tumours arising in the MMTV-c-ErbB2 mice usually display
mutations in the wild type rat c-ERBB2 transgene resulting in
a constitutively activated form of ErbB2 [18]. One possible
means by which expression of myr-Akt1 could accelerate
tumourigenesis in the MMTV-c-ErbB2 mice would be to

bypass the apparent requirement for mutation of rat c-ERBB2.
However, analysis of the tumours that appeared in the bitrans-
genic mice indicated that these tumours also contain the acti-
vating mutations in the rat c-ERBB2 allele (data not shown).

Tumour histology was evaluated using haematoxylin and eosin
stained sections. The histology of the c-ErbB2 tumours was
consistent with previous descriptions: they are solid tumours
composed of uniformly sized and shaped cells with small
stroma and no evidence of myoepithelial cells [6,23] (Figure
1b). Staining of tumours from the bitransgenic animals
revealed two different types of tumours: those similar to c-
ErbB2 tumours with a solid, uniform architecture (Figure 1c);
and the second type of tumour demonstrated necrosis in areas
of the tumour 10 to 20 cells away from vasculature, consistent
with a tumour that outgrows its blood supply (Figure 1d, e).
Very little necrosis is ever observed in tumours derived from
MMTV-c-ErbB2 mice.

Figure 1

Bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice have decreased mammary tumour latency, more aggressive tumour histology and decreased apoptosis compared with MMTV-c-ErbB2 miceBitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice have decreased mammary tumour latency, more aggressive tumour histology and decreased 
apoptosis compared with MMTV-c-ErbB2 mice. (a) Mammary tumour latency in bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice and MMTV-c-
ErbB2 mice. Sixty days after birth, bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 and MMTV-c-ErbB2 mice were palpated weekly to monitor for the 
presence of mammary tumours. The graph shows the rate at which tumours were first detected for both genotypes. A total of 22 bitransgenic mice 
and 30 MMTV-c-ErbB2 mice were monitored and the graph shows the number of days to tumour detection versus the percentage of tumour-free 
mice. (b-e) Haematoxylin and eosin stained tumour sections. (b) Tumour derived from a MMTV-c-ErbB2 mouse. (c-e) Tumors derived from bitrans-
genic MMTV-myr-Akt1, MMTV-c-ErbB2 mice. (c) A bitransgenic tumour with histology similar to that of c-ErbB2 tumours. (d-e) Two different bitrans-
genic tumours demonstrating necrotic tumour tissue distal to a blood vessel (blood vessel marked with * and necrosis marker with **). ×200 original 
magnification. (f) Tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice have less apoptosis than tumours from MMTV-c-ErbB2 mice. 
Apoptosis was quantitated by activated caspase-3 immunohistochemistry. The number of cells staining positively for activated caspase-3 was 
divided by the total number of cells counted to generate the apoptotic rate. (g) Tumours from bitransgenic mice have a higher proliferation rate than 
tumours from MMTV-c-ErbB2 mice. Proliferation rate was determined by counting the number of mitotic figures in 10 500× magnification fields of 
view and the data is presented as the mean +/- standard deviation for three tumours of each genotype.
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After initial detection, tumour volumes were determined by
measuring the tumour dimensions with calipers to estimate
tumour volume (volume = (length × width × width)/2). A com-
parison of tumour growth in mice of both genotypes revealed
that tumour volume increased two to three times faster in the
bitransgenic mice compared with tumours in the MMTV-c-
ErbB2 transgenic mice (data not shown). The increased
growth rate of tumours in the bitransgenic mice could result
from either increased proliferation, decreased apoptosis or
both. Measurement of the apoptotic rates in both tumour types
by activated caspase-3 immunohistochemistry demonstrates
that the tumours from the bitransgenic animals have an apop-
totic rate half that of the tumours derived from the MMTV-c-
ErbB2 animals (Figure 1f). The rate of proliferation, determined
by quantitating the number of mitotic figures in tumour sec-
tions, demonstrated that tumours from bitransgenic animals
had a higher proliferation rate than tumours from MMTV-c-
ErbB2 animals (Figure 1g). Thus, the bitransgenic animals rap-
idly develop mammary tumours with a low rate of apoptosis
and high rate of proliferation compared with the tumours from
MMTV-c-ErbB2 animals, and at least half of these bitransgenic
tumours exhibit extensive necrosis.

The expression of the transgenes was examined at the protein
level in tumours (T) and normal mammary gland control (N)
taken from tumour-bearing mice of both the MMTV-c-ErbB2
and MMTV-c-ErbB2, MMTV-myr-Akt1 genotypes. Mammary
glands from FVB mice and MMTV-myr-Akt1 mice were used
as controls. Immunoblotting with an anti-ErbB2 antibody dem-
onstrated that the level of ErbB2 protein was dramatically
increased in tumours of both origins compared with normal

mammary tissue from the same mouse, from FVB mice or from
myr-Akt1 transgenic mice (Figure 2a).

Expression of the HA-tagged myr-Akt1 transgene was only
detected in tumour tissue from the bitransgenic animals (Fig-
ure 2b). The myr-Akt1 transgene in the bitransgenic tumours
was phosphorylated at Ser473, indicating enzymatic activity,
and can be distinguished from endogenous Akt because the
myr-Akt1 transgene has a higher molecular weight (Figure 2c).
Akt was also phosphorylated in c-ErbB2 tumours, consistent
with previously published data [8] (Figure 2c). Immunoblot
using anti-pan-Akt antibody demonstrates expression of
endogenous Akt in both tumour types with the c-ErbB2
tumours expressing more Akt than the bitransgenic tumours
(Figure 2d). An immunoblot with anti-β-actin antibody demon-
strates equal sample loading (Figure 2e). All immunoblot data
presented in the present study is representative of all tumour
and normal gland pairs examined (n = 5 for c-ErbB2 and n =
7 for bitransgenic). The different levels of proteins expressed
in tumour tissue versus normal tissue is probably due to both
a difference in selective pressures brought on by tumourigen-
esis and a dramatic increase in epithelial cell content in tumour
tissue: the virgin mammary gland is predominantly adipocytes
and tumour tissue is predominantly epithelial in nature.

Diminished overexpression and activation of EGFR 
family members in tumours from bitransgenic animals
Mammary tumours from transgenic mice expressing activated
mutants of ErbB2 also express elevated levels of total and
tyrosine-phosphorylated ErbB2 and ErbB3 [7]. As previously
shown in Figure 2, ErbB2 was increased in tumour lysates
from both MMTV-c-ErbB2 and bitransgenic mice compared

Figure 2

Tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice and MMTV-c-ErbB2 mice overexpress ErbB2 and phosphorylated AktTumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice and MMTV-c-ErbB2 mice overexpress ErbB2 and phosphorylated Akt. Tumour (T) 
and normal mammary tissue (N) were harvested from tumour-bearing mice. Tumours from three different bitransgenic MMTV-myr-Akt1, MMTV-c-
ErbB2 mice and three different MMTV-c-ErbB2 mice are represented with normal mammary tissue from the same animal. Additionally, normal mam-
mary tissue was collected from control FVB and MMTV-myr-Akt1 mice and analysed as a control. Equal amounts of total protein was loaded per lane 
to a 10% sodium dodecyl sulfate polyacrylamide gel, transferred to polyvinylidene difluoride and probed with the following antibodies: (a) anti-
ErbB2; (b) anti-HA to detect the HA epitope-tagged myr-Akt1 transgene; (c) anti-phospho-Akt (Ser473); (d) anti-pan-Akt; and (e) anti-β-actin to 
demonstrate equal loading of the gel.
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with normal tissue (Figure 3c). The extent of activating
phosphorylation of ErbB2 was lower in the bitransgenic
tumours than in the c-ErbB2 tumours, demonstrated by using
phosphospecific antibodies to two different phosphorylation
sites in ErbB2, Tyr877 and Tyr1248 (Figure 3a, b). Phospho-
rylation of Tyr877 is mediated by Src and contributes to the
activation of the ErbB2 tyrosine kinase, and Tyr1248 is an
autophosphorylation site [24,25]. Increased levels of ErbB3
(Figure 3e), Tyr1289-phosphorylated ErbB3 (Figure 3d), epi-
dermal growth factor receptor (EGFR) (Figure 3f) and ErbB4
(Figure 3g) were readily detected in the c-ErbB2 tumours
compared with normal tissue from the same mice.

While increased levels of EGFR and ErbB3 protein could be
detected in the bitransgenic tumours when compared with
normal tissue, the extent of the increase was dramatically
reduced compared with that observed in the c-ErbB2
tumours. Most importantly, the phosphorylation of ErbB3 was
very low at Tyr1289 (Figure 3d), which is an important phos-
phorylation site for PI3K recruitment and activation [26].
ErbB4, the sole member of the EGFR family with an expres-
sion that bears positive prognostic value to breast cancer
patients and suppresses proliferation and promotes apoptosis
[27,28], was not detected in the bitransgenic tumours (Figure
3g). These data suggest that expression of activated Akt1 in
the MMTV-c-ErbB2 transgenic mice alters the requirement for
overexpression and activation of ErbB3 and other EGFR family
members in mammary tumours induced by ErbB2.

Diminished activation of signalling downstream of 
ErbB2 in bitransgenic tumours
Mammary tumours expressing c-ErbB2 have been found to
possess elevated levels of Src tyrosine protein kinase activity
[29,30]. The Src protein binds to phosphotyrosine residues in
the cytoplasmic tail of ErbB2, resulting in Src phosphorylation
at Tyr416 and catalytic activation [31,32]. The amount of
Tyr416-phosphorylated Src present in the c-ErbB2 tumours
was dramatically increased in comparison to the bitransgenic
tumours and normal tissue (Figure 4a), even though the
bitransgenic tumours express more total Src than the c-ErbB2
tumours (Figure 4b). The reduced Src activation indicated by
low Tyr416 phosphorylation levels in the bitransgenic tumours
is corroborated by the reduced phosphorylation of ErbB2 at
Tyr877 (Figure 3a), which is mediated by Src [24,25]. The
reciprocal positive regulation of Src by ErbB2 and ErbB2 by
Src is strongly diminished in the bitransgenic tumours (in addi-
tion to the reduced activation of ErbB3) indicating a general
decline in plasma membrane tyrosine kinase signalling in the
bitransgenic tumours.

The lack of activation/overexpression of EGFR family members
and the lack of activation of Src in the bitransgenic tumours
suggested that signalling mediated by secondary signalling
molecules might also be attenuated in the bitransgenic
tumours when compared with c-ErbB2 tumours. Gab2 is a
scaffolding protein that can recruit the p85 subunit of PI3K
when it is phosphorylated at Tyr452 [33] which in turn acti-
vates PH-domain containing proteins such as Akt [34]. The
levels of Gab2 protein are elevated in both c-ErbB2 tumours

Figure 3

Expression and activation of EGF receptor tyrosine kinase family members is decreased in tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice compared with tumours from MMTV-c-ErbB2 miceExpression and activation of EGF receptor tyrosine kinase family members is decreased in tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-
ErbB2 mice compared with tumours from MMTV-c-ErbB2 mice. Lysates from tumour (T) and normal mammary tissue (N) were used for immunoblot 
analysis using the following antibodies: (a) anti-phospho-ErbB2 (Tyr877); (b) anti-phospho-ErbB2 (Tyr1248); (c) anti-ErbB2; (d) anti-phospho-
ErbB3 (Tyr1289); (e) anti-ErbB3; (f) anti-EGFR; (g) anti-ErbB4; and (h) anti-β-actin to demonstrate equal loading of the gel.
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and bitransgenic tumours compared with normal gland con-
trols (Figure 4d), although the level is slightly higher in c-ErbB2
tumours than bitransgenic tumours. The amount of Tyr452-
phosphorylated Gab2 is dramatically higher in the c-ErbB2
tumours compared with the bitransgenic tumours (Figure 4c)
suggesting that expression of activated Akt1 in the
bitransgenic animals attenuates phosphorylation of Gab2 and
subsequent docking of PI3K, which occurs in c-ErbB2
animals.

It has recently been demonstrated that another secondary sig-
nalling molecule, ShcA, is required for ErbB2-mediated
tumourigenesis and phosphorylation of Tyr313 in ShcA may
be important for tumour cell survival, while phosphorylation of
Tyr239/240 may be important for tumour vascularisation [35].
c-ErbB2 tumours and bitransgenic tumours both demonstrate
expression of ShcA (Figure 4g), particularly the p52 and the
p46 isoforms while the p66 isoform was barely detectable.
Both tumour types also appear to have similar levels of
Tyr239/240-phosphorylated ShcA (with the bitransgenic
tumours having slightly less phosphorylation than the c-ErbB2
tumours), indicating that activities regulated by phosphoryla-
tion of this site (perhaps in angiogenesis) are important in both
tumour types (Figure 4f). However, the difference in phospho-
rylation of ShcA at Tyr313 is more dramatic between the two
tumour types (Figure 4e), with the c-ErbB2 tumours having
more ShcA phosphorylated at Tyr313 than the bitransgenic
tumours suggesting that activities regulated by phosphoryla-

tion of this site (cell survival) may be less important in the
tumours that express activated Akt1.

Oncogenic signalling often activates the Erk pathway, which is
a known mediator of cell proliferation, cell survival, angiogen-
esis and cell migration (reviewed in [36]). Dual phosphoryla-
tion of Erk1 and Erk2 (corresponding to Thr183 and Tyr185 of
human Erk2) in the activation loop results in catalytic activation
of kinase activity [37]. Despite the attenuation of several sig-
nalling events in the bitransgenic tumours when compared
with the c-ErbB2 tumours as discussed above, both tumour
types maintain similar levels of phosphorylated/activated Erk
(Figure 4h) indicating that transgenic activation of Akt1 does
not bypass Erk signalling. Normal gland controls demonstrate
various levels of Erk activation.

Expression/activation of cell cycle control proteins in 
bitransgenic tumours
The decrease in the tumour latency observed in the bitrans-
genic tumours would predict that there would be a change in
the expression/modification of cell cycle control proteins in the
bitransgenic tumours compared with the c-ErbB2 tumours.
Phosphorylation of Rb by active cyclin-dependent kinases
inactivates Rb activity and is an important regulatory step in
cell cycle entry [38,39]. Immunoblot analysis with a phospho-
specific antibody against Rb (Ser780) demonstrated Rb
phosphorylation in tumour lysates from both genotypes of
mice and not in the normal tissue from the same mice (Figure
5a). The extent of Rb phosphorylation was greater in the c-

Figure 4

Tumours from MMTV-myr-Akt1, MMTV-c-ErbB2 mice have decrease tyrosine kinase signalling compared with tumours from MMTV-c-ErbB2 miceTumours from MMTV-myr-Akt1, MMTV-c-ErbB2 mice have decrease tyrosine kinase signalling compared with tumours from MMTV-c-ErbB2 mice. 
Lysates from tumour (T) and normal mammary tissue (N) were used for immunoblot analysis using the following antibodies: (a) anti-phospho-Src 
(Tyr416); (b) anti-Src; (c) anti-phospho-Gab2 (Tyr452); (d) anti-Gab2; (e) anti-phospho-Shc (Tyr313); (f) anti-phospho-Shc (Tyr239/240): (g) anti-
Shc; (h) anti-phospho-Erk (corresponding to Erk2 phosphorylation at Thr183 and Tyr185); and (i) anti-Erk.
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ErbB2 tumours than in the bitransgenic tumours. This is
surprising because the bitransgenic tumours have a shorter
tumour latency and greater mitotic index which we predicted
would correlate with more Rb phosphorylation and a more
active cell cycle. However, Hutchinson et al. observed a similar
phenomenon in their study: the NDL2 tumours (activated
ErbB2) demonstrated a higher level of Ser780-phosphor-
ylated Rb than the bitransgenic NDL2/Akt1DD tumours even
though the bitransgenic animals had a shorter tumour latency
[15]. The total amount of Rb is almost the same in all tumours
examined indicating differences observed in Rb phosphoryla-
tion are not in fact due to differences in total Rb levels (Figure
5b).

We also examined a second cell cycle control protein, cyclin
D1. The D-type cyclins are synthesised during the G1 phase
of the cell cycle after stimulation of cells with growth factors
that stimulate cell cycle entry and are required for cell cycle
progression [40]. Immunoblot analysis revealed cyclin D1 in all
samples with the bitransgenic tumours having a higher level of
cyclin D1 than normal tissue, but the c-ErbB2 tumours con-
taining more cyclin D1 than the bitransgenic tumours (Figure
5c). This data correlates with the Rb phosphorylation data
which is consistent with the role of cyclin D1 in positively reg-
ulating cyclin dependent kinase activity and phosphorylation of
Rb [40].

The bitransgenic tumours have a shorter latency than the c-
ErbB2 tumours, but contain less phosphorylated Rb and less
cyclin D1, which led us to examine some cell cycle inhibitors.
p15 (INK4b), p27 (Kip1) and p21 (Cip1) are all inhibitors of
cell cycle progression [41]. Immunoblot analysis for p15 dem-
onstrated high expression in the c-ErbB2 tumours, a lack of
expression in all normal glands and very faint expression in the
bitransgenic tumours (Figure 5d). The expression profile of
p27 was similar with a lack of expression in all normal tissue,

high expression in c-ErbB2 tumours and slightly lower level of
expression in the bitransgenic tumours (Figure 5e). We were
unable to detect p53 and p21 in any of the tumour and normal
mammary tissue samples, though both were present in an irra-
diated control gland (data not shown). While c-ErbB2 tumours
contain more positive markers of the cell cycle than the
bitransgenic tumours (phosphorylated Rb and cyclin D1), they
also express more negative regulators of the cell cycle (p15
and p27), which likely serves to balance cell cycle
progression.

An elevated metabolic phenotype in bitransgenic 
tumours compared with MMTV-c-ErbB2 tumours
One of the hallmarks of tumours and tumour cell lines is the
elevated level of glucose transport to support the high glyco-
lytic rate of tumour cells [42,43]. Myr-Akt1 can stimulate the
translocation of the GLUT1 glucose transporter to the cell sur-
face of lymphoid cells cultured in the absence of growth fac-
tors as well as increase hexokinase activity, glucose
consumption and lactate production, which suggests that Akt
stimulates aerobic glycolysis and produces the so-called
'Warburg effect' [44,45]. Immunoblot analysis demonstrates
elevated levels of GLUT1 (the major glucose transporter in
cancer cells) in lysates from mammary tumours from both the
MMTV-c-ErbB2 and the bitransgenic mice compared with lev-
els in normal glands. However, GLUT1 protein expression was
greater in the bitransgenic tumours (Figure 6a). Cell-line trans-
fection using GLUT1 cDNA validates the elongated band
identified by GLUT1 immunoblot and the reason for this elon-
gated band is probably due to glycosylation of GLUT1 (data
not shown).

To determine whether the increased level of GLUT1 correlated
with an increase in glycolysis (increased glucose consumption
and increased lactate production), we used MRS to quantitate
lactate concentrations in extracts prepared from tumours

Figure 5

MMTV-c-ErbB2 tumours demonstrate different cell cycle proteins than tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 miceMMTV-c-ErbB2 tumours demonstrate different cell cycle proteins than tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice. Lysates 
from tumour (T) and normal mammary tissue (N) were used for immunoblot analysis using the following antibodies: (a) anti-phospho-Rb (Ser780); 
(b) anti-Rb; (c) anti-cyclin D1; (d) anti-p15; and (e) anti-p27.
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because lactate is the end product of glycolysis. The mammary
tumours examined in this study are of epithelial cell origin, so
the use of mammary tissue from day two of lactation (L2) as a
control tissue allows for the comparison of normal epithelium
with tumour epithelium, whereas the normal virgin mammary
gland is composed mostly of adipocytes [46]. Compared with
normal L2 tissue, there was a four-fold increase in the amount
of lactate in the MMTV-c-ErbB2 tumours and a six-fold
increase in the bitransgenic tumours (Figure 6c) (p < 0.00001
between L2 and both tumours and p < 0.02 between ErbB2
and bitransgenic tumours, all n = 5). This increase in tumour
glycolytic activity was accompanied by significantly decreased
intratumuor concentrations of glucose: 1.10 nmol/mg in the
L2 mammary gland, 0.46 nmol/mg in ErbB2 tumours (p <
0.01) and 0.14 nmol/mg in bitransgenic tumours (p < 0.0004)
(Figure 6d). This indicates high glucose utilisation due to the
increased activity of glycolytic enzymes. Thus, the bitransgenic
tumours appear to consume more glucose and secrete more
lactate than the c-ErbB2 tumours or the normal epithelial cell-
enriched lactating mammary gland.

Discussion
We have demonstrated that expression of activated myr-Akt1
in MMTV-c-ErbB2 mice accelerates mammary tumourigene-
sis. Hutchinson et al. used a similar mammary tumourigenesis
model using MMTV-NDL2-5 animals (which express activated
ErbB2 in the mammary gland) and compared them with
bitransgenic MMTV-NDL2-5, MMTV-Akt1DD animals (which
express activated ErbB2 and an activated Akt1 gene that con-
tains phosphomimetic mutations of Ser473 and Thr308) [15].

They found that expression of activated Akt1 accelerated
ErbB2-induced tumourigenesis in their NDL2 model. The
NDL2/Akt1DD bitransgenic tumours were more differentiated
glandular tumours which expressed milk proteins. Expression
of activated Akt1 in the MMTV-c-ErbB2 model did not induce
more differentiated glandular tumours, but rather accelerated
tumour formation often appearing to cause necrosis. Com-
pared with the c-ErbB2 tumours, the bitransgenic tumours
demonstrated half the amount of apoptosis and twice the
amount of mitosis, suggesting that a decrease of apoptosis
and increase in proliferation in the bitransgenic tumours con-
tributed to faster tumour formation. Similar to Hutchinson et
al., evaluation of apoptosis by TUNEL (terminal deoxynucleoti-
dyl transferase dUTP nick end labeling) staining revealed
almost no apoptotic cells in any of our tissue samples (data not
shown), but evaluation of apoptosis by activated caspase-3
immunohistochemistry identified some apoptotic cells.

ErbB3, the major EGFR family member that activates the
PI3K/Akt pathway [47], is required for ErbB2-induced cancer
cell proliferation, transformation and colony formation in
vitro[8,48]. There is a functional interaction between ErbB2
and ErbB3 in the MMTV-c-ErbB2 mouse model [8]. Activated
Src is important for efficient ErbB2/ErbB3 heterocomplex for-
mation and full activation of the ErbB2 kinase domain [24]. We
have demonstrated that tumourigenesis in the MMTV-c-ErbB2
model proceeds with reduced activation of ErbB2, ErbB3,
Src, Gab2 and Shc when activated Akt1 is expressed by
transgene. Akt is often activated in cancer cells by the activat-
ing mutation of PI3K [49], inactivation of PTEN [50] and, a

Figure 6

Metabolic activity is elevated in tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice compared with tumours from MMTV-c-ErbB2 miceMetabolic activity is elevated in tumours from bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice compared with tumours from MMTV-c-ErbB2 
mice. Increased expression of the GLUT1 glucose transporter in bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 tumours compared with the MMTV-
c-ErbB2 tumours. Lysates from tumour (T) and normal mammary tissue (N) were used for immunoblot analysis using a polyclonal antibody against 
the c-terminus of GLUT1 (a) and actin-loading control (b). Intratumour concentration (nmol/mg tissue) of lactate (c) and glucose (d) in mammary 
glands at day 2 of lactation (L2), tumours from MMTV-c-ErbB2 and bitransgenic MMTV-myr-Akt1, MMTV-c-ErbB2 mice (all n = 5) calculated from 
1H-magnetic resonance spectroscopy.
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recently demonstrated mechanism, by mutation of Akt itself
[51]. Our results demonstrate that Akt activation by any of
these means may lead to less dependency on ErbB2/ErbB3
and Src signalling without inhibiting tumourigenesis. It is not
clear whether the diminished activation of these signalling
molecules reflects a reduced need for them to be activated
due to the presence of activated Akt or a negative feedback
loop by which activated Akt can suppress activation of ErbB3-
dependent signalling.

Two recent reports studying tumourigenesis in MMTV-ErbB2
mice on an Akt1-/- background highlight the importance of
Akt1 in ErbB2-induced tumourigenesis [52,53]. Both groups
used activated ErbB2 models of tumourigenesis in Akt1-/- and
Akt+/+ backgrounds and demonstrated the importance of
Akt1 in mediating ErbB2-induced tumourigenesis: mice lack-
ing Akt1 either failed to develop tumours or tumourigenesis
was delayed. However, while Akt1 is required for efficient
tumour formation in MMTV-ErbB2 mouse models, activation of
Akt1 alone is not sufficient for mammary tumourigenesis
[11,12] indicating that other pathways downstream of ErbB2
activation are important for tumour formation.

The Erk pathway is activated in many types of cancer and can
be activated by numerous oncogenic signals, including ErbB2
(Figure 4h) [36]. The bitransgenic tumours used in the current
study maintained Erk activation (despite the loss of numerous
other signalling events), which suggests that Erk signalling is
necessary in these tumours. This may be one explanation for
why Akt is necessary for ErbB2 tumourigenesis [52,53], but is
not sufficient for mammary tumourigenesis [11,12]: activation
of Akt alone may fail to activate Erk.

Most tumour cells rely on increased glycolysis, even in the
presence of available oxygen (the Warburg effect). It has been
shown that p53, HIF-1 (hypoxia inducible factor 1), c-Myc as
well as Akt can all upregulate glycolytic enzymes (often
through inhibition of the mitochondrial tricarboxylic acid cycle)
to trigger increased tumour cell glucose consumption [54].
The increased levels of lactate and reduced concentrations of
glucose in both types of tumours in the present study is con-
sistent with an increased glycolytic rate in the tumours, but the
bitransgenic tumours contained more lactate and more
GLUT1 than the c-ErbB2 tumours. This led to the hypothesis
that activation of Akt1 induced aerobic glycolysis in these
mammary carcinomas. This may offer another explanation for
the accelerated tumour onset in the bitransgenic animals
because glycolysis, while inefficient in terms of wasting the full
oxidative potential of glucose, is efficient at producing ATP
and also generating metabolic byproducts necessary for mem-
brane synthesis [55].

Human breast carcinomas overexpress ErbB2 in 20% to 30%
of cases and patients with this type of tumour bear a poor
prognosis and are currently treated with trastuzumab, a

humanised monoclonal antibody. Trastuzumab treatment sig-
nificantly boosts the prognosis for patients with breast
tumours that overexpress ErbB2, but the response rate for
these patients is about 50% to 60% [56]. Nagata et al. dem-
onstrated that loss of the PTEN tumour suppressor (which
induces Akt activation) predicts resistance to trastuzumab
treatment [57]. We predict that our bitransgenic animals rep-
resent a model of a patient who would be resistant to trastuzu-
mab. Tumours from bitransgenic animals overexpress ErbB2,
making them candidates for ErbB2-targeted therapy, but
drugs which molecularly target ErbB2 (such as trastuzumab)
or ErbB2/ErbB3 heterodimers (such as pertuzumab) may be
futile because signalling downstream of ErbB2/ErbB3 is
already attenuated in bitransgenic animals. If activation of Akt1
in human tumours (which can occur by loss of PTEN function
or activating mutation of either PI3K or Akt) is critical to ErbB2-
positive breast cancer cells becoming trastuzumab resistant,
then evaluation of the activation status of Akt may assist in
deciding the prognosis and treatment strategy for breast can-
cer patients as compared with the current screening that only
identifies amplification of ErbB2. Additionally, therapies which
molecularly target the Akt pathway may be critical to overcome
trastuzumab resistance.

Conclusion
Expression of activated Akt1 in the mammary gland of MMTV-
c-ErbB2 mice accelerates tumourigenesis and attenuates sig-
nalling events sometimes thought to be critical to tumourigen-
esis. The bitransgenic tumours also have an accelerated
glucose metabolism. Our studies suggest that tumours that
overexpress ErbB2 which activate Akt by means of mutating
PI3K, PTEN or Akt (rather than via ErbB2/ErbB3 activation of
PI3K) may be resistant to ErbB2-targeted therapies. There-
fore, therapies which molecularly target signalling events
downstream of ErbB2, such as those mediated by Akt, may
prove to be valuable.
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